
Reprinted from PC/104 Embedded Solutions / Summer 2002

There’s embedded Linux and there’s embedded Linux. The
Linux strategy used for a shirt-pocket sized MP3 player won’t
necessarily fit in the PC/104 world. And guess what? RedHat
and other commercial releases lean toward the MP3, PDA,
cell phone, etc. side of embedded. So what’s a PC/104 system
architect to do? This article will look at the Linux beast from a
definitely “PC/104 angle.” It will ask, then answer, a number
of critical questions related to application, development
environment, tool chain, drivers, and applications.

In a relatively short amount of time and for a number of different
reasons, the Linux operating system has become the first choice of
many embedded systems developers. First, it provides a much
richer set of features than would typically be available in either a
custom software environment or a DOS-based system. Second,
since it is open-source and freely available to the public, it can
alleviate some of the costs associated with many commercially
available real-time operating systems (RTOSs). Finally, its UNIX
flavor gives it a standardized operator interface and programming
API, making it an excellent mid-range solution for projects that
need a fair amount of “software horsepower,” but wish to avoid
the cost of a third-party RTOS.

The list of features provided by the Linux kernel is impressive and
is growing all the time. In addition, with the sheer volume of
freely available software for Linux, putting together an embedded
system with a remarkable amount of functionality and connectiv-
ity can be quick and painless. Features such as embedded Web-
servers, GUIs, or remote administration can easily be compiled
and installed once the system is up and running. However, many
developers lured by the promise of greater functionality in a
shorter amount of time, are left wondering just exactly what an
embedded Linux system will look like. Should I just install a
desktop distribution on the target? What about development
tools? How much hardware support will I need to run Linux?

This article will attempt to answer some of these questions and in
the process, hopefully, give you a feel for how Linux looks in an
embedded application. As you will see, Linux is a remarkably con-
figurable operating system, and taking the time to get the right envi-
ronment set up can really streamline the development process.

When do I need Linux?
When is the right time to use Linux in a particular embedded appli-
cation? This is the common question for developers new to Linux.

An application that consists of mostly custom code of low com-
plexity will be unlikely to benefit much from moving to Linux
because the overhead of booting the kernel and setting up the sys-
tem will unnecessarily complicate the application. For example,
an application that just responds to incoming serial requests by
toggling some digital I/O lines would not be a good candidate for
using Linux. On the other hand, if your application requires the
use of any major standardized software features, like TCP/IP, GUI

support, or multitasking, Linux may save a considerable amount
of time and money.

Another important factor is the hardware you intend to use for the
application. A typical x86 Linux system will require at least a 386
processor and 8 Mbytes of DRAM, not to mention a place to store
the file system. Some commercially available embedded Linux
distributions have kernels that will run in more resource-con-
strained environments, but if the above requirements are too steep
for your application, Linux might not be the best fit.

Linux is quite flexible when it comes to user interface require-
ments. If your hardware has a monitor and keyboard, then Linux
will come up right out of the “box” and you will be able to log in
to your system and run commands. If you are operating in a head-
less environment, you can still use Linux over a serial port, or
over Ethernet (via telnet). One of the most remarkable and won-
derful things about Linux is, to the system, all three of these envi-
ronments are essentially the same. In fact, the shell program, the
program that reads user input and executes commands, is the
exact same program no matter which setup you use. The end
result is that you can spend your entire development phase with a
monitor and keyboard attached, and then reconfigure the system
to run over the serial port for production purposes, and the inter-
face over the serial port will be the same. You will see how this
works later during discussion of device drivers.

How should I set up my development environment?
Once you’ve decided to use Linux for your application, the ques-
tion of how to get the system onto your embedded target quickly
arises.

There are two major factors that distinguish between the number of
different approaches to loading Linux onto an embedded target.
These factors are: where the Linux kernel resides, and where the file
system resides. This is because Linux has essentially a two-stage
boot process. First the kernel comes up and initializes all the hard-
ware and driver support, and when it has finished, it mounts a file
system known as the root filesystem. Once the root filesystem has
been mounted, the kernel runs a special program called init, which
is responsible for running any initialization scripts, spawning system
services, and controlling the system run-level.

This first approach is what I call a standalone system (Figure 1).
This is where the embedded target has enough functionality to
look like a complete PC, and a standard desktop Linux distribu-
tion can be installed on it directly. In this case, both the kernel and
the file system reside on the same drive, which is supported by the
target, typically an IDE disk drive. However, there can be some
drawbacks to this approach. First of all, most desktop distribu-
tions are pre-configured for quite a bit more functionality than a
typical embedded system will require. This can lead to slow boot-
up times and sometimes even slow system performance since
loading unused drivers and services consumes system memory.
Also, desktop distributions distribute kernels, which are config-

Feature Article

Embedded Linux
on PC/104 By Eric Finster

Reprinted from PC/104 Embedded Solutions / Summer 2002

ured to support every possible device since they are meant to be
compatible with a wide variety of desktop hardware. Eliminating
these unused drivers and services can save a considerable amount
of system memory.

There are a number of commercially available embedded Linux
distributions (Hard Hat Linux, Blue Cat Linux, and so on), which
are stripped down for embedded use, and, most of them also sup-
port standalone configurations where the system is installed
directly on the target. They may also support one or more of the
advanced booting mechanisms listed below, which address the
problem of diskless and headless targets.

The next approach is the network-boot approach (Figure 2). In
this configuration, a network boot ROM is used to load a system
image off the network when the board is powered on. Notice that
in this case both the kernel and the file system reside on a remote
machine, and whatever hardware mechanisms are in place for

booting from the network take care of transferring the kernel to
the board. This approach will also make use of the Network File
System (NFS), which is described below. Many of the commer-
cially available embedded Linux systems have support for gener-

ating custom boot ROMs designed for various embedded targets
and are tailored to work with their particular setup.

Finally, there is what I call the hybrid approach (Figure 3). In
this case a Linux kernel is booted directly by the target hard-
ware, and then the kernel seeks out its file system over the net-

work using NFS. The kernel can be booted on the target board
by either using a boot floppy, or, if the board supports it, by
putting the kernel directly in Flash or some other permanent
storage device. If you get your Linux system as part of a pack-
age from a PC/104 board-level manufacturer, this is a common
approach, since the manufacturer can pre-configure a kernel that
supports the board’s features. Micro/sys, for example, makes
many of its boards available with a Linux kernel pre-installed in
Flash so that you can boot the target immediately into the Linux
environment (Figure 4).

The advantage of the hybrid
approach is this: the target
board’s file system will
appear as a subdirectory on
your desktop machine. This
means you can manipulate
the configuration of the tar-
get just by editing the files in
this directory, with all the
comforts of your desktop
machine. Additionally, if the
target system uses the same
compiler as your desktop sys-
tem, you can develop your application, compile it, and just copy
it to its final location. This setup provides the most flexible devel-
opment environment for embedded targets, since it scales down to
the smallest devices and up to full-scale systems.

When the development phase is complete, configuring the board
for production use can be as simple as issuing a copy command
that transfers all the files from the desktop system to some per-
manent media device mounted on the target. Micro/sys provides

Embedded
Target

Kernel and
file system on

target drive

Stand-alone

Figure 1

Network
Hub

Target
Device

Network-boot

Kernel and file system on
networked workstation

Network
Protocol

Figure 2

Network
Hub

Kernel on
Target
Device

Hybrid

File system on
Development Host

NFS

Figure 3

Figure 4

Reprinted from PC/104 Embedded Solutions / Summer 2002

an automated script that will copy all the files to a Disk-on-Chip
and make any necessary configuration changes to boot that
device.

What development tools will I use?
Though it can be a bit intimidating at first, the GNU C-compiler
(gcc) and associated tool kit are one of Linux’s greatest strengths.
The compiler produces fast, efficient code and can be configured
as a cross-compiler for a wide variety of target systems. In most
cases, the embedded Linux distribution will include some version
of gcc already configured for the correct target platform. The GNU
C-compiler also has an associated debugger called gdb, which can
be configured for remote use, rounding out a complete set of
embedded application development tools.

There are many freely available and proprietary Integrated
Development Environments (IDEs) available for Linux and gcc as
well. These programs will let you write and build (and sometimes
debug) applications in a comfortable graphical environment,
which can be a great help if you are coming from a Windows or
DOS background. On the other hand, as many Linux gurus will tell
you, learning one of the more common Linux text editors such as
vi or emacs will be well worth the effort if you plan to get deeper
into customizing your Linux system.

What kind of drivers will I need?
Since Linux is a multiuser, multitasking environment, the kernel
cannot allow arbitrary access to hardware devices. Thus, all hard-
ware requests are sent through Linux’s device driver layer. Devices
are represented by files in a special directory /dev. When an appli-
cation program opens a device file, it is like opening a channel to
the hardware device that owns that file. By reading or writing data
to the file (using the standard fread() or fwrite() functions, or any
other I/O functions for that matter), the application program can
communicate with the hardware device.

Routing all hardware functions through these device files allows
the Linux kernel to handle sequencing and simultaneous access. It
also adds an added dimension of abstraction to the system as a
whole. As I mentioned above, the same shell program can be run
over the virtual console (that is, monitor and keyboard), the serial
port, or the Ethernet port via a telnet session. This is because the
shell only has to know how to read and write from a device file and
doesn’t care what kind of device file it is using. Though it might
seem counter-intuitive at first to have all the hardware accesses go
through a file, you will find, after playing with the system for a
while, that it simplifies many programming tasks immensely.

Each device file is created in a way that allows it to talk to a spe-
cific hardware driver inside the kernel. Drivers exist for many of
the hardware features you will find in most desktop systems (for
example, keyboard, video, serial ports, and disk drives) but they
may not exist for some of the more exotic features found in embed-
ded systems, such as digital I/O or specific data acquisition cards.
If you find this is the case for some hardware feature you wish to
use, you might consider writing a driver yourself. There are many
freely available guides on the Internet that show you how to do
this. Although, if the I/O task is simple enough, you can use the
ioperm()/iopl() functions to allow your program to access I/O ports
directly. You should be able to find information on these functions
in the main pages of any Linux desktop system.

How will I get my application going?
Linux was originally designed to be a multiuser operating system.
This kind of configuration can sometimes be overkill in an embed-
ded system where only a single application is meant to run when
the system starts. As I outlined above, after the kernel has finished
booting up, it transfers control to an executable program on the file
system called init. In a desktop system, this program will go
through a set of initialization scripts to configure the system and
launch any services that are required, and then provide the user
with a login prompt.

For an embedded system, you will probably need to configure
these scripts (typically stored in /etc/rc.d) to launch your applica-
tion. Some embedded distributions may automate this process for
you by allowing you to specify a single executable file as your
application program, and then generating the appropriate configu-
ration scripts accordingly. Also, you may wish to read about the
init program and its configuration file /etc/inittab, since for your
final production environment, you will need to design a startup
mechanism that handles launching any services needed by your
application (system logging, for example), launching your appli-
cation itself, and handling error conditions, such as when your
application exits abnormally.

What does it all mean?
Linux can be a terrific solution for embedded applications that
depend on a high degree of software support or that make use of
standardized software protocols or packages. Like anything else in
life, Linux is not a free lunch, as it requires a considerable invest-
ment in designing and implementing a system that will work for
your application. If you are a newcomer to Linux, it is highly rec-
ommended to first get your hands on one of the many desktop
Linux distributions, install it, and play with the system for a while
before you embark on an embedded application. Make sure you
are first comfortable with the various tools and utilities that make
up the system.

Also, remember that when you move to a more robust operating
system like Linux, you are trading time spent developing applica-
tion code for time spent configuring the system as a whole, of
which the application code is just one part. I have tried to outline
some of the configuration challenges you may face when moving
Linux into the embedded space, but the success of the project will
depend upon viewing Linux as the sum of its parts: your applica-
tion, the drivers, the kernel, and the files and utilities in the file sys-
tem. When seen in this light, Linux is one of the most flexible and
robust systems available today.

Eric Finster is a Software Engineer with
Micro/sys. Micro/sys has been deeply
involved in the board-level OEM computer
market since 1978. Applications assistance
on Linux, VxWorks, DOS, and other operat-
ing systems – especially their impact on
PC/104 systems – is a key area of customer
support. Micro/sys is located in Montrose,
CA, just north of Los Angeles. Eric can be
reached at: efinster@embeddedsys.com

Micro/sys, Inc.
3730 Park Place
Montrose, CA 91020
Tel: 818-244-4600
Fax: 818-244-4246
E-mail: info@embeddedsys.com
Web site: www.embeddedsys.com

Embedded Linux on
PC/104 cont.

Reprinted from PC/104 Embedded Solutions / Summer 2002

Resources

For further information about embedded Linux visit:

LinuxDevices Web Portal for Embedded Linux
http://www.linuxdevices.com

Monta Vista Embedded Linux Distribution
http://www.mvista.com

LynuxWorks Embedded Linux Distribution
http://www.lynuxworks.com

Red Hat (Embedded) Linux Distribution
http://www.redhat.com

Micro/sys Single Board Computers
http://www.embeddedsys.com

